\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let f and g be real functions. Recall f is said to be differentiable at $x=a$ if the following limit exists:

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Suppose that f and g are both differentiable at $x=a$. Prove that $f+g$ is differentiable at $x=a$ and show that

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
$$

2. Let f and g be real functions such that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

Prove that

$$
\lim _{x \rightarrow a} f(x) g(x)=L M
$$

3. Let X be a countable set of real numbers and fix a to be a nonzero real number. Define the set

$$
a X=\{a x: x \in X\} .
$$

Prove that $a X$ is countable.
4. Let X be a countable set of real numbers and fix a to be a nonzero real number. Define the set

$$
X+a=\{x+a: x \in X\} .
$$

Prove that $X+a$ is countable.
5. Let X and Y be sets. Suppose $Y \subseteq X$ and X is countable. Prove that Y is countable.
6. Let X and Y be sets. Suppose $Y \subseteq X$ and Y is uncountable. Prove that X is uncountable.
7. Let $d=\operatorname{gcd}(a, b)$ where $a, b \in \mathbb{N}$. If $a=d a^{\prime}$ and $b=d b^{\prime}$, show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
8. Let $d=\operatorname{gcd}(a, b)$ where $a, b \in \mathbb{N}$. Prove that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.
9. We showed \mathbb{R} is uncountable by proving $(0,1)$ is uncountable. By assuming \mathbb{R} is uncountable, prove that the interval $(0,1)$ is uncountable by constructing a map from $(0,1)$ to \mathbb{R} and demonstrating the map is a bijection.

